
NetSmart.AI Project Overview – Designed by Soufian Carson

Field Content

Purpose

Design and deploy a lightweight Linux-kernel monitoring agent that

captures WaveServer AI CMD traffic and fiber-link health, shares it with

user space through /proc + mmap, enriches it with AI-based anomaly

detection and traffic forecasting, and streams the results to a cloud

dashboard for real-time observability and auto-remediation.

Project

Title

Smart Kernel-Based Monitoring Agent for Fiber-Optimized Optical

Networks (SKMA-FON)

Project

Manager
Soufian Carson

Project

Team

• Soufian Carson — PM & Lead Developer• Teammate A — Kernel

Module Developer• Teammate B — Cloud/API Engineer• Teammate C —

AI/ML Engineer• Teammate D — Front-End & UX Designer

Start Date /

End Date
07 Jun 2025 – 30 Aug 2025 (12 weeks)

2. Scope

Features to be delivered

• Linux kernel module that exports real-time CMD & fiber metrics via

/proc/optifiber/myinfo.

• Shared-memory mapping using mmap() for zero-copy user-space access.

• User-space agent (Python) that polls the buffer, preprocesses data and pushes to

the cloud.

• AI service (edge ONNX + cloud endpoint) for anomaly detection & 15-minute

traffic forecasting.

• Cloud time-series database (InfluxDB Cloud) storing raw & AI-enriched metrics.

• Web dashboard (React + Chart.js) for live visualization, alerts and historical

trends.

• Auto-remediation webhook that can call (or simulate) WaveServer MCP to

provision extra CMD capacity when forecast > 90 % utilization.

• Complete DevOps pipeline (GitHub Actions, Dockerfiles, IaC script).

Out of scope

• Mobile app (UI)

• Hardware encryption module integration (future phase)

• Production deployment on live WaveServer hardware (lab simulation only)

NetSmart.AI Project Overview – Designed by Soufian Carson

3. Schedule

A. Work-Breakdown Table

Task

ID
Task Description Start End Responsible

Est.

Hours
Progress

T1
Requirements & architecture

workshop
06/07 06/09 Soufian C. 12 0 %

T2
Prototype kernel buffer & /proc

entry
06/10 06/17

Teammate

A
40 0 %

T3
Implement mmap() handler & unit

tests
06/18 06/24

Teammate

A
30 0 %

T4
Write Python agent: mmap reader +

pre-processing
06/18 06/24 Soufian C. 25 0 %

T5
Build edge AI (ONNX) & cloud AI

endpoint (SageMaker)
06/25 07/05 Teammate C 45 0 %

T6
Cloud ingestion API & InfluxDB

Cloud setup
06/25 07/03 Teammate B 28 0 %

T7 Front-end dashboard (React) 07/04 07/17
Teammate

D
45 0 %

T8
Alert engine & auto-remediation

webhook
07/18 07/24 Teammate B 20 0 %

T9
Integration testing (kernel ↔ agent

↔ cloud ↔ UI)
07/25 08/07 Whole team 50 0 %

T10
Documentation, user guide &

training video
08/08 08/18 Soufian C. 24 0 %

T11
Final demo, slide deck &

retrospection
08/19 08/30 Whole team 20 0 %

A simple Gantt chart can be generated in Excel with the above dates.

4. Team Organization

A. Roles

• Project Manager (Soufian) — timeline, risks, stakeholder comms.

• Kernel Developer (Teammate A) — C coding, kernel APIs, /proc, mmap.

• Cloud/API Engineer (Teammate B) — REST API, DB schema, alert micro-

service.

• AI/ML Engineer (Teammate C) — dataset prep, model training, ONNX

conversion.

• Front-End Designer (Teammate D) — React UI, Grafana theme, UX testing.

NetSmart.AI Project Overview – Designed by Soufian Carson

B. Member profiles

(Attach résumés in appendix; each one-paragraph bio describes experience with Linux,

AWS, React, etc.)

5. Requirements Documentation

A. Functional Requirements

1. System must collect CMD throughput (Gbps), error counters, and link status

every second.

2. Agent must expose an HTTP endpoint /metrics returning latest JSON packet.

3. System shall flag an anomaly when anomaly_score ≥ 0.8.

4. Dashboard must refresh visuals ≤ 2 seconds after metric arrival.

5. Webhook shall POST to MCP API when forecast utilization > 90 %.

Non-Functional Requirements

• Kernel overhead < 2 % CPU on Intel i5-8250U.

• End-to-end latency from kernel update to dashboard render ≤ 3 s.

• TLS 1.2 for all cloud traffic.

• System uptime target 99.5 % during demo week.

B. Specifications (diagrams)

• Use-case diagram: Roles (Agent, Dashboard, AI, Auto-remediator).

• Flow of events:

1 — Deployment & Boot

Event Main Actors Notes

1

DevOps pipeline builds

monitoring_module.ko, user-space agent,

and container images.

GitHub

Actions /

Docker

Images include Python

agent + lightweight AI

client libraries.

2
Edge host (WaveServer-adjacent Linux

box) pulls latest container.

Containerd /

systemd

The container starts

automatically on boot.

2 — Kernel-Space Setup

Event
Main

Actors
Notes

3
Container entry-point runs insmod

monitoring_module.ko.
Host OS

Requires CAP_SYS_MODULE or

baked-in module.

NetSmart.AI Project Overview – Designed by Soufian Carson

Event
Main

Actors
Notes

4
init_module() allocates one page per

site (e.g., 4 × 4 KB).

Kernel C

code

Each page holds struct site_stats

(throughput, errors, BER).

5

Module populates

/proc/optifiber/myinfo and registers

.mmap callback.

Kernel
Buffer marked reserved with

SetPageReserved().

3 — User-Space Data Access

Event
Main

Actors
Notes

6

Python/Go agent opens

/proc/optifiber/myinfo

(O_RDWR).

Agent

process
Runs under the same container.

7

Agent calls mmap(),

receiving a pointer to the

shared pages.

Agent

↔

kernel

Zero-copy: no read() calls needed.

8

A lightweight polling loop

(e.g., every 1 s) converts

raw bytes into JSON dicts.

Agent
Example payload:

{"site":"Dallas","throughput":1570,"errors":2}.

4 — Local Pre-Processing & AI Inference

Event Main Actors Notes

9
Agent runs on-device feature extraction (traffic

delta, moving average).

NumPy /

Pandas

Keeps packet

rate, error trend,

utilization %.

10
Pre-processed batch is sent to an AI inference

endpoint (REST/gRPC).
HTTP/HTTPS

Two deployment

options:

 10a

Edge AI: a tiny ONNX model (Isolation Forest

or LSTM) shipped in the container for

offline/low-latency inference.

ONNX-

Runtime

Works even

when WAN is

down.

 10b

Cloud AI: send to managed service (e.g., AWS

SageMaker Endpoint, Vertex AI, or an OpenAI

function calling your fine-tuned model).

TLS
High accuracy,

central training.

11
AI model returns: { "anomaly_score": 0.91,

"forecast_next_15min_gbps": 1800 }.
Model

Threshold > 0.8

triggers alert.

5 — Cloud Ingestion & Persistence

Event Main Actors Notes

12

Agent pushes raw & AI-

enriched metrics to cloud time-

series DB.

InfluxDB Cloud /

Timestream / Firebase
Retention policy 30 days.

NetSmart.AI Project Overview – Designed by Soufian Carson

Event Main Actors Notes

13

Metrics also streamed to Kafka

/ Kinesis for real-time

pipelines.

Optional
Enables multiple consumers

(dashboards, alert engine).

6 — Visualization & Alerting

Event Main Actors Notes

14

Grafana / React dashboard subscribes to DB or

WebSocket and renders CMD utilization,

forecasts, and anomaly heat-map.

Web

Chart updates

every few

seconds.

15
If anomaly score high or forecast > 90 %

capacity, alert micro-service triggers:

Lambda /

Cloud

Function

 15a Slack / Teams / email notification to NOC.
Twilio /

SendGrid

 15b

Optional auto-remediation webhook: tells

WaveServer MCP API to pre-provision an extra

CMD module or shift traffic.

MCP north-

bound API

7 — Feedback to Kernel (Optional Closed Loop)

Event
Main

Actors
Notes

16

Cloud decision engine posts a

config command to the agent

(MQTT / REST).

Agent Ex: {"site":"Dallas","cmd_add":1}

17

Agent writes new config to

/proc/optifiber/cmd_control

(another proc entry).

write_proc()
Kernel adjusts its simulation

parameters (or real driver in prod).

18
Kernel buffer now reports updated

stats, loop continues from step 6.

Continuous

loop

Demonstrates self-healing / auto-

scaling.

8 — Shutdown & Cleanup

Event Main Actors Notes

19 DevOps issues docker stop or host reboots. Host

20
Container pre-stop hook runs rmmod

monitoring_module.

systemd /

Docker

21
cleanup_module() frees pages, clears reservations,

removes /proc entries.
Kernel

Ensures no

memory leaks.

NetSmart.AI Project Overview – Designed by Soufian Carson

 Adding AI: Practical Implementation Tips

Component Minimal Viable Option Production-Ready Option

Model Type

Isolation Forest for anomaly;

simple ARIMA for forecast

(scikit-learn on device).

LSTM/CNN trained in SageMaker;

batch retraining daily; served via real-

time endpoint.

Data

Pipeline

Agent sends JSON over HTTPS to

Firebase / Supabase.

Kafka → Flink → InfluxDB Cloud →

Grafana Loki.

Edge vs

Cloud

Ship ONNX model (few MB) in

the agent container.

Hybrid: quick edge inference, cloud

for heavy retraining / global view.

Security Signed JWT per host; TLS to API.
AWS IAM roles, private VPC

endpoints, mutual TLS, audit logs.

• Class/struct diagram: show struct site_stats, Python MetricPacket, React

StateStore.

• ER diagram: Influx schema (measurement = site_stats, tags = site, fields =

metrics).

• Decision table: If anomaly & forecast thresholds trigger actions.

(todo: PDFs/images in template appendix.)

6. System Design

A. Conceptual Design (summary)

The kernel module periodically samples (or simulates) optical metrics and stores them in

a reserved page. A user-space Python agent maps that page, converts bytes to structured

JSON, performs local feature extraction and calls either an embedded ONNX model or a

cloud SageMaker endpoint for anomaly detection and short-term forecasting. Enriched

metrics are sent via REST to a Flask API fronting InfluxDB Cloud. A React dashboard

subscribes to WebSocket updates for real-time visualization. An alert micro-service

monitors the DB; when thresholds are breached it notifies Slack and can POST to a

(simulated) WaveServer MCP endpoint to pre-provision additional CMD modules.

NetSmart.AI Project Overview – Designed by Soufian Carson

B. Report Formats

• Daily CSV export of site_stats.

• Weekly PDF capacity report (auto-generated by Python script).

C. Screen Layouts

• Login / Swagger page for API key.

• Live Dashboard with four gauges (one per site) and anomaly heat-map.

• Settings page to adjust alert thresholds and webhook URL.

D. Technical Design

• Kernel: C, Linux 6.x, procfs, remap_pfn_range.

• Agent: Python 3.12, numpy, onnxruntime, requests, Docker Alpine base.

• Backend: Flask 2, InfluxDB Cloud, AWS Lambda alert engine.

• Frontend: React 19, Vite, Chart.js.

• CI/CD: GitHub Actions, Docker Hub, Terraform for AWS infra.

E. Database Design

Measurement site_stats

Field Type Description

time timestamp influx auto field

site tag MicrosoftDC, Dallas, Dobbins, Stone

throughput_gbps float Current traffic

error_count int CRC/FEC errors

anomaly_score float 0–1

forecast_gbps float 15-min prediction

NetSmart.AI Project Overview – Designed by Soufian Carson

7. Technical Description

A. Key Interfaces & Modules

Module Function User Special Notes

/proc/optifiber/myinfo Raw shared page

Kernel ↔

Agent

4 KB per site

Python Agent REST

/metrics
Current JSON snapshot

Dashboard,

Alert svc

JSON schema

v1

AI Endpoint /predict
Returns anomaly score &

forecast
Agent JWT auth

Alert Webhook
Sends

{"site":x,"cmd_add":1}

MCP

(simulated)

ISO 8601

timestamps

B. HW/SW Requirements

• Ubuntu 22.04 LTS VM, 2 vCPU, 4 GB RAM.

• Docker 24.0+, compose V2.

• AWS free-tier account (Lambda, IAM, InfluxDB Cloud).

C. Role/Permission Matrix

Role View Dashboard Edit Thresholds Load Kernel Call MCP

Admin ✔ ✔ ✔ ✔

NOC User ✔ ✖ ✖ ✖

DevOps ✔ ✔ ✔ ✖

8. Data Management Plan

• Data collected: throughput, error count, anomaly score, forecast.

• Access: API keys scoped per role; IAM roles for cloud resources.

• Protection: TLS 1.2+, at-rest encryption via InfluxDB Cloud.

• Backups: Daily export to S3 lifecycle bucket (30-day retention).

• Privacy: No PII; metrics only.

• Disaster recovery: Terraform script can redeploy infra in < 30 min.

9. Test Plan

A. Approach

• Unit tests: Kernel functions mocked with KUnit; Python pytest.

NetSmart.AI Project Overview – Designed by Soufian Carson

• Integration: Docker-Compose stack bringing up kernel-enabled container + API

+ dashboard.

• User Acceptance: Simulated NOC users validate alerts.

• Performance: Use stress-ng to ensure CPU < 2 %.

• Security: OWASP ZAP scan on REST API.

B. Completion Criteria

• 100 % pass of critical unit tests.

• No Sev-1 or Sev-2 bugs open.

• Dashboard latency ≤ 3 s with 1 k msg/s load.

C. User Support

• Markdown user guide in repo.

• Video demo (5 min) on YouTube (unlisted).

• Contact email: support@skma-fon.dev.

10. Technical Support Plan

• Training: 1-hour Zoom workshop; slides + lab instructions.

• Installation: One-command make deploy (Terraform + Docker).

• Ongoing Support: GitHub Issues; SLA 48 h response.

• Updates: Semantic versioning; monthly releases.

• Troubleshooting: FAQ in README—covers dmesg, rmmod, TLS errors.

• Support Hours: 9 am – 6 pm EST; contact 404-555-0123.

Appendix

• Diagrams (use-case, class, ER, deployment).

• Team resumes.

• Sample Grafana dashboard screenshot.

• Slide deck for final presentation.

